Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel

نویسندگان

  • J Neyton
  • C Miller
چکیده

In this study, high-conductance Ca2+-activated K+ channels from rat skeletal muscle were incorporated into planar phospholipid bilayers, and discrete blockade of single channels by Ba2+ was studied. With 150 mM K+ held constant in the internal solution, increasing external K+ over the range 100-1,000 mM raises the rate of Ba2+ dissociation. This "enhancement effect," which operates at K+ concentrations 3-4 orders of magnitude higher than those required for the "lockin" effect described previously, depends on applied voltage, saturates with K+ concentration, and is not observed with Na+. The voltage dependence of the Ba2+ off-rate varies with external K+ in a way suggesting that K+, entering the channel from the external side, forces Ba2+ dissociation to the internal solution. With K+ held fixed in the external solution, the Ba2+ off-rate decreases as internal K+ is raised over the range 0-50 mM. This "lock-in" effect is similar to that seen on the external side (Neyton and Miller, 1988), except that the internal lock-in site is of lower affinity and shows only a fivefold preference for K+ over Na+. All the results taken together argue strongly that this channel's conduction pathway contains four sites of very high affinity for K+, all of which may be simultaneously occupied under normal conducting conditions. According to this view, the mutual destabilization resulting from this high ionic occupancy leads to the unusually high conductance of this K+-specific channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block of N-type Calcium Channels in Chick Sensory Neurons by External Sodium

L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 microM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of microM conc...

متن کامل

Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel from Chara australis

The patch-clamp technique is used to investigate divalent ion block of the large-conductance K+ channel from Chara australis. Block by Ba2+, Ca2+, Mg2+, and Pt(NH3)4(2+) from the vacuolar and cytoplasmic sides is used to probe the structure of, and ion interactions within, the pore. Five divalent ion binding sites are detected. Vacuolar Ca2+ reduces channel conductance by binding to a site loca...

متن کامل

Localization of the K+ Lock-in and the Ba2+ Binding Sites in a Voltage-Gated Calcium-Modulated Channel

Using Ba2+ as a probe, we performed a detailed characterization of an external K+ binding site located in the pore of a large conductance Ca2+-activated K+ (BKCa) channel from skeletal muscle incorporated into planar lipid bilayers. Internal Ba2+ blocks BKCa channels and decreasing external K+ using a K+ chelator, (+)-18-Crown-6-tetracarboxylic acid, dramatically reduces the duration of the Ba2...

متن کامل

Effect of Phosphatidylserine on Unitary Conductance and Ba2+ Block of the BK Ca2+–activated K+ Channel

Incorporation of BK Ca2+-activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely depe...

متن کامل

Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells

Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 92  شماره 

صفحات  -

تاریخ انتشار 1988